- B) K₂SO₃, NH₄HSO₃, KOH, K₂CO₃, CuO, MgO, PbO;
- C) CuS, NH₄Cl, Ca(OH)₂, CaCO₃, CaCl₂, MgCl₂, ZnCl₂;
- D) K₂S, (NH₄)₂S, Ba(OH)₂, BaCO₃, CuO, Al₂O₃, UO₃;
- E) CaSO₄, (NH₄)₂SO₄, LiOH, MgCO₃, MgCl₂, CuCl₂, BaCl₂.

32. Methods based on the extraction of SO₂ from exhaust gases using solid sorbents are called:

- A) electrochemical;
- B) neutralizing;
- C) hydrothermal;
- D) adsorption;
- E) electrothermal.

33. The adsorption method for the extraction of SO2 from exhaust gases is carried out on the following adsorbents:

- A) bentonite, CaCl₂, MgCl₂, ZnCl₂, CuCl₂, BaCl₂;
- B) alumina, CaCO₃, MgCO₃;
- C) alumina, MgO, BaCO₃, K₂CO₃;
- D) molecular sieves, CuSO₄, Al₂O₃, (NH₄)₂SO₃, K₂CO₃;
- E) activated carbon, MnO₂, Na₂CO₃.

34. As catalysts for the extraction of SO₂ from exhaust gases are used:

- A) Fe₂O₃, bentonite, CaCl₂;
- B) MgO, alumina, H₂SO₄;
- C) CaO, Al₂O₃;
- D) MnO₂, activated carbon, H₂S₂O₈;
- E) ZnO, expanded clay, H₂S₂O₃.

35. The following methods are used to reduce SO₂ emissions from exhaust gases in the production of sulfuric acid:

- A) double contacting;
- B) adsorption;
- C) thermal neutralization;
- D) electrochemical;
- E) electrothermal.

36. The main method of purification of exhaust gases from SO₂, which has found industrial application, is:

- A) carbonate method;
- B) the calcareous method;
- C) sulfate method;
- D) sulfite method;
- E) ammonia method.

37. The following formula corresponds to an aqueous solution of sulfuric acid:

- A) $2SO_3 \cdot 3.5H_2O$;
- B) SO₃·H₂O;
- C) 0.5SO₃·2H₂O;
- D) SO₃·2.5H₂O;
- E) SO₃·3.5H₂O.

38. The main stages of obtaining sulfuric acid by contact method from pyrites are: