- B) K₂SO₃, NH₄HSO₃, KOH, K₂CO₃, CuO, MgO, PbO; - C) CuS, NH₄Cl, Ca(OH)₂, CaCO₃, CaCl₂, MgCl₂, ZnCl₂; - D) K₂S, (NH₄)₂S, Ba(OH)₂, BaCO₃, CuO, Al₂O₃, UO₃; - E) CaSO₄, (NH₄)₂SO₄, LiOH, MgCO₃, MgCl₂, CuCl₂, BaCl₂. ### 32. Methods based on the extraction of SO₂ from exhaust gases using solid sorbents are called: - A) electrochemical; - B) neutralizing; - C) hydrothermal; - D) adsorption; - E) electrothermal. ## 33. The adsorption method for the extraction of SO2 from exhaust gases is carried out on the following adsorbents: - A) bentonite, CaCl₂, MgCl₂, ZnCl₂, CuCl₂, BaCl₂; - B) alumina, CaCO₃, MgCO₃; - C) alumina, MgO, BaCO₃, K₂CO₃; - D) molecular sieves, CuSO₄, Al₂O₃, (NH₄)₂SO₃, K₂CO₃; - E) activated carbon, MnO₂, Na₂CO₃. #### 34. As catalysts for the extraction of SO₂ from exhaust gases are used: - A) Fe₂O₃, bentonite, CaCl₂; - B) MgO, alumina, H₂SO₄; - C) CaO, Al₂O₃; - D) MnO₂, activated carbon, H₂S₂O₈; - E) ZnO, expanded clay, H₂S₂O₃. ### 35. The following methods are used to reduce SO₂ emissions from exhaust gases in the production of sulfuric acid: - A) double contacting; - B) adsorption; - C) thermal neutralization; - D) electrochemical; - E) electrothermal. # 36. The main method of purification of exhaust gases from SO₂, which has found industrial application, is: - A) carbonate method; - B) the calcareous method; - C) sulfate method; - D) sulfite method; - E) ammonia method. #### 37. The following formula corresponds to an aqueous solution of sulfuric acid: - A) $2SO_3 \cdot 3.5H_2O$; - B) SO₃·H₂O; - C) 0.5SO₃·2H₂O; - D) SO₃·2.5H₂O; - E) SO₃·3.5H₂O. #### 38. The main stages of obtaining sulfuric acid by contact method from pyrites are: